Bioceramics Lecture 9 Drug Delivery Using Ceramic Nanoparticles

Tobias Bollhorst

Dr. rer. nat. Michael Maas

Prof. Dr.-Ing. Kurosch Rezwan

Keramische Werkstoffe und Bauteile - Advanced Ceramics Universität Bremen Am Biologischen Garten 2, IW3 D - 28359 Bremen

Tel: +49 421 218 64939 Fax: +49 421 218 64932

http://www.ceramics.uni-bremen.de/

Universität Bremen

michael.maas@uni-bremen.de Bioceramics – L9

A dvanced

CS

Course Outline "Bioceramics"

- 1. Introduction: Applications, Goals and Challenges
- 2. A short Introduction to Proteins and Cells
- 3. Ceramics at the Biology Interface: Fundamental Interactions
- 4. Characterization of Biomolecule Adsorption
- 5. Bones and Teeth: Composites of Ceramics and Proteins
- 6. Ceramics for Orthopedic and Dental Implants: Alumina and Zirconia
- 7. Scaffolds for Bone Tissue Engineering: Calciumphosphates
- 8. Scaffolds for Bone Tissue Engineering: Bioglass® and Glass-Ceramics
- 9. Drug Delivery Using "Ceramic" Nanoparticles
- 10. Biomineralization
- 11. Biomimetic Materials
- 12. Student Talks on Selected Topics
- 13. Summary

The summary lecture will be right before the exams.

2

- Drug Delivery Basics
- Drug Delivery Techniques
- Drug Delivery Using "Ceramic" Nanoparticles

Nanotechnology and Life Sciences

4

Targeted Drug Delivery (it's all about the patient!)

Conventional systemic drug delivery

michael.maas@uni-bremen.de Bioceramics – L9 Advanced

Nanoparticles in contrast to tissue material (length scales)

Proteins usually posses radii between 2 and 50nm

The size of blood vessels varies enormously, from a diameter of about 25 mm in the aorta to only $8 \mu m$ in the capillaries.

• Advanced

michael.maas@uni-bremen.de Bioceramics – L9

6

Nanoparticle Drug Delivery – an interdisciplinary science

Bioceramics – L9

(Targeted) Drug Delivery with Nanocarriers

Conventional drug delivery systems (DDS) such as oral ingestion or intravascular injection, the drug is distributed throughout the body through the systemic blood circulation. For most therapeutic agents, only a small portion of the drug reaches the affected organ. E.g. distribution of Aspirin.

- **Targeted drug delivery** is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to other.
- Targeted drug delivery seeks to concentrate the drug in the tissues of interest while reducing the relative concentration of the drug in the remaining tissues. This improves efficacy of the drug while reducing side effects.
- Two kinds of targeted drug delivery:
 - *Passive targeting:* Enhanced permeability and retention effect (EPR-Effect)
 - Active targeting: Attachment of specific ligands to the surface of pharmaceutical carriers to recognize and bind pathological cells

🗖 🔵 💿 A dvance

Targeted Drug Delivery in Nanomedicine

https://www.youtube.com/watch?v=2VcNpl8-PRI

www.ceramics.uni-bremen.de

9

Targeted Drug Delivery using Nanoparticles

Challenges in Targeted Drug Delivery

Targeted therapeutics must:

- 1. Diffuse out of vasculature openings that measure around 500 nm
- 2. Recognize target cells and bind with high avidity and specificity to extracellular binding domain
- 3. Internalize and intracellularly traffic to site of intended action
- 4. Avoid "normal" tissue
- 5. Remain intact until reaching its intended site of action
- 6. Carrier should be stable and biologically inert (ceramic or polymer)

www.ceramics.uni-bremen.de

Drug Delivery: EPR Effect (passive drug targeting)

Peer, D, et al. Nature Nanotechnology 2007, 2, 751-760

www.ceramics.uni-bremen.de

12

Drug Delivery: EPR Effect

www.ceramics.uni-bremen.de

13

Universität

Bremen

Tumors have "leaky" blood vessels, which allow relatively large nano-sized drug carriers to enter.

This is called Enhanced Permeability and Retention (EPR) Effect.

Normal blood vessels are not "leaky" and nanoparticles are prevented from entering. This allows one to selectively target tumors.

Particles with sizes around 50nm – 200nm ideal

●●● A d v a n c e d

Drug Delivery Carriers

Bremen

Bioceramics – L9

Drug Delivery Carriers

http://www.nature.com/nrn/journal/v10/n9/full/nrn2685.html

www.ceramics.uni-bremen.de

Nature Reviews | Neuroscience

S. No.	Particle size distribution (nm)	
Polymeric systems		
1	Dendrimers	1-10
2	Polymer micelles	10-100
3	Niosomes	10-150
4	Nanoparticles	50-500
5	Nanocapsules	100-300
6	Nanogels	200-800
7	Polymer-drug nanoconiugates	1-15
8	Chitosan polymers	100-800
9	Methacrylate polymers	100-800
Lipid systems		
1	Solid lipid nanoparticles	50-400
2	Lipid nanostructured systems	200-800
3	Cubosomes	50-700
4	Liposomes	10-1000
5	Polymerosomes	100-300
6	Immunoliposomes	100-150
Protein/peptide nanotubes		
1	Peptide nanotubes	1-100
2	Fusion proteins and immunotoxins	3-15
Metal nanostructures		
1	Metal colloids	1-50
2	Carbon nanotubes	1–10 (diameter) and 1–1000 (length)
3	Fullerene	1-10
4	Gold nanoparticles	100-200
5	Gold nanoshells	10-130
6	Silicone nanoparticles	80년) 다스가 중에 여러
7	Magnetic colloids	100-600

16

michael.maas@uni-bremen.de CERAMICS

Protein Corona

Solar eclipse

During a total solar eclipse _h the solar **corona** can be seen by the naked eye

Universität Bremen

www.ceramics.uni-bremen.de

17

Particle "stealthing"

Nanoparticle/Liposome stealthing via PEG functionalization

Staying undetected by the radar system

SITAT www.ceramics.uni-bremen.de

18

Staying undetected by auto-immunesystem

- Drug Delivery Basics
- Drug Delivery Techniques
- Drug Delivery Using "Ceramic" Nanoparticles

michael.maas@uni-bremen.de

Bioceramics – L9

A dvanced

CS

Types of Drug Delivery Devices

1. Diffusion Controlled Delivery Devices

- Monolithic Devices
- Membrane Controlled Devices
- Osmotic Pressure Devices
- Swelling-Controlled Devices

2. Chemically Controlled Approaches

- Matrix Erosion
- Combined Erosion/Diffusion
- Drug Covalently Attached to Polymer
- Desorption of Adsorbed Drug

3. Electronic/Externally Controlled Devices

- MEMS
- Superparamagnetism

Controlled drug release

Controlled-released systems

- use less amount of drug → reduce side effects
- Maintain drug therapeutic concentrations

O • A dvanced

Release Profiles

22

michael.maas@uni-bremen.de Bioceramics – L9 ●●● A d v a n c e d

5

Drug Release Mechanisms

23

michael.maas@uni-bremen.de Bioceramics – L9 Advanced

FRAMICS

Burst Release

Typical triphasic release profile from poly-d,I-lactide-co-glycolide (PLGA) matrices. Phase I shows a high initial burst release, phase II is diffusion-controlled slow release and phase III is characterized by fast release owing to erosion of the polymer matrix.

Agarwal, P.; Rupenthal, I. D. Drug Discovery Today 2013, 18, 337–349.

24

michael.maas@uni-bremen.de Bioceramics – L9 ●●● A d v a n c e d

Oral Delivery

Reservoir-based oral osmotic system (OROS[™])

- Sustained release vs. immediate-release oral formulations
- Patient compliance
- Deliver drugs independently of their solubility
- Controlled-release OROS delivery system

Bioceramics – L9

- Drug Delivery Basics
- Drug Delivery Techniques
- Drug Delivery Using "Ceramic" Nanoparticles

"Ceramic" Nanoparticles/-carriers for Drug-Delivery/Diagnostics

nano-

- doxorubicin possible

particles

- example: iron oxide shell Fe₃O₄@mSiO₂

A dvanced

www.ceramics.uni-bremen.de

27

> Overview: Microcapsules

Pictures taken from: [Arruebo et al. Magnetic nanoparticles for drug delivery. nanotoday, 2(3):22-32, June 2007.]

28

Applications for microcapsules

Universität

Bremen

- Targeted and sustained drug delivery (medicine)
- Triggered release of pesticides (agriculture)
- Nutrition encapsulation (food industry)
- Fragrence encapsulation (cosmetic products)

www.ceramics.uni-bremen.de

Important properties

- Biocompatibility
- Controlled stability
- Tunable porosity
- Size below 500 nm for drug delivery

●●● A d v a n c e d

Smart" properties

Lecture Outline

- Drug Delivery Basics
- Drug Delivery Techniques
- Drug Delivery Using "Ceramic" Nanoparticles
 - Iron Oxide Nanoparticles
 - Gold Nanoparticles
 - Mesoporous silica
 - Calcium carbonate
 - Colloidosomes

CS

Ferrofluids

Superparamagentism:

- Particles are smaller than the magnetic domains
- Brownian motion prevents magnetic orientation of the particles
- External field → orientation of ferrofluids along field lines → ferromagnetism

michael.maas@uni-bremen.de

A dvanced

Frontiers in Science: Treatment of Cancer with Magnetic Iron Oxide Nanoparticles

The new procedure involves coating nano iron oxide particles (magnetite, Fe_3O_4 , 3 – 15 nm) with an organic substance, such as the sugar glucose, and injecting them into a malignant tumor. The tumor, which has a fast metabolism and correspondingly high energy needs, greedily sucks up the little particles masquerading as sugar pellets of a sort. Healthy cells, on the other hand, show little interest.

Magnetic field heats up the nanoparticles inside the malignant tumor cells up to 45°C.

Cancer Cells after Fe₃O₄-Nanoparticle Treatment

Advanced

[Jordan A, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neuro-Oncol. 2006]

[www.ccnanochem.de, UK Charite (Berlin)]

www.ceramics.uni-bremen.de

32

Bioceramics – L9

michael.maas@uni-bremen.de/

> SPIONs in clinical trials or available on the market

Product	Company/Developer	Coating Agent	Application	Targeting Moiety	Use
Feridex/	AMAG Pharma, Inc.	Dextran	Liver tumors	None	Imaging
Endorem					
Ferumoxytol	AMAG Pharma, Inc.	Polysorbito carboxy methyl ether	CNS tumors	None	Imaging
Resovist®	Bayer Schering	Carboxydextran	Liver metastasis;	None	Imaging
	Pharma AG		colon cancer		
SPION	Sun, Ranganathan,	PEG/Dextran	Breast cancer	Folic Acid	Imaging
	Feng 2008				
SPION	Kohler et al., 2005	3-(aminopropyl)	Brain tumors	Methotrexate	Imaging and
		trimethoxysilane			treatment
SPION	Sun, Lee, Zhang, 2008	PEG	Brain tumors	Chlorotoxin	Imaging and
					treatment
SPION	Wang et al., 2008	PEG	Prostate cancer	A10 RNA aptamer	Imaging and
					treatment
SPION	Leuschner et al., 2006	Chorionic gonadotropin	Breast cancer	LHRH	Imaging
SPION	Kikumori et al., 2009	Liposome	Breast cancer	Anti-HER2	Imaging
				antibody	
SPION	Chen et al., 2009	Dextran	Breast cancer	Herceptin	Imaging
USPION	Jiang et al., 2009	3-(aminopropyl)	Lung cancer	RGD	Imaging
		trimethoxysilane			

CNS, central nervous system; PEG, poly(ethylene glycol); LHRH, luteinizing hormone releasing hormone; RGD, arginine-glycine-aspartic acid.

33

michael.maas@uni-bremen.de Bioceramics – L9 ●●● A d v a n c e d

Lecture Outline

- Drug Delivery Basics
- Drug Delivery Techniques
- Drug Delivery Using "Ceramic" Nanoparticles
 - Iron Oxide Nanoparticles •
 - Gold nanoparticles •
 - Mesoporous silica •
 - Calcium carbonate •
 - Colloidosomes

Gold-NP: Plasmonic coupling effect and drug delivery

Bremen

35

Bioceramics – L9

Microcapsules in Cancer Therapy

Targeted drug delivery and theragnostics

Wang, Y.; Brown, P.; Xia, Y. *Nat Mater* **2011**, *10*, 482–483, Von Maltzahn, G.; et al. *Nat Mater* **2011**, *10*, 545–552.

Local drug concentration control

[Monika Schäfer-Korting. Drug Delivery. Handbook of Experimental Pharmacology. Springer, 2010.]

●●● A d v a n c e d

Still missing Universal and simple microencapsulation technique that creates capsules with multiple properties.

36

Bioceramics – L9

michael.maas@uni-bremen.de

Lecture Outline

- Drug Delivery Basics
- Drug Delivery Techniques
- Drug Delivery Using Ceramic Nanoparticles
 - Iron Oxide Nanoparticles
 - Gold nanoparticles
 - Mesoporous silica
 - Calcium carbonate
 - Colloidosomes

Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J.; Phillips, B.; Carter, M. B.; Carroll, N. J.; Jiang, X.; Dunphy, D. R.; Willman, C. L.; Petsev, D. N.; Evans, D. G.; Parikh, A. N.; Chackerian, B.; Wharton, W.; Peabody, D. S.; Brinker, C. J. Nat Mater 2011, 10, 389–397.

38

michael.maas@uni-bremen.de Bioceramics – L9 ●●● A d v a n c e d

Figure 1 | Schematic illustration of the nanoporous particle-supported lipid bilayer, depicting the disparate types of therapeutic and diagnostic agent that can be loaded within the nanoporous silica core, as well as the ligands that can be displayed on the surface of the SLB. Targeting and fusogenic peptides are chemically conjugated to phosphatidylethanolamine (DOPE or DPPE), present in the SLB at 1–5 wt%, by a heterobifunctional crosslinker with a PEG spacer arm (n = 24). The SLB, composed of either fluid (DOPC) or non-fluid (DPPC) zwitterionic phosphatidylcholine lipids with 30 wt% cholesterol, is further modified with 5 wt% PEG-2000 PE to enhance colloidal stability and decrease nonspecific interactions.

DOPC protocells (1) bind to HCC with high affinity owing to recruitment of SP94 targeting peptides (magenta) to the cell surface, (2) become internalized by receptor-mediated endocytosis and (3) release their cargo into the cytosol on endosome acidification and protonation of the H5WYG fusogenic peptide (blue). (4) Cargos modified with an NLS are transported through the nuclear pore complex and become concentrated in the nucleus.

40

Bioceramics – L9

Lecture Outline

- Drug Delivery Basics
- Drug Delivery Techniques
- Drug Delivery Using "Ceramic" Nanoparticles
 - Iron Oxide Nanoparticles
 - Gold nanoparticles
 - Mesoporous silica
 - Calcium carbonate
 - Colloidosomes

Coacervation

Coacervation:

- Demixing or liquid-liquid phase separation of lyophilic colloids into a two-phase system.
- Driving force: electrostatic interaction, entropy
- Classic system: gelatin + gum arabic

Bungenberg de Jong, H.; Kruyt, H. In *Proc. K. Ned. Akad. Wet*; 1929; Bd. 32, 849–856.

●●● A d v a n c e d

Universität _{wwv} Bremen

www.ceramics.uni-bremen.de

42

Coacervation

Kaempfe, P.; Lauth, V. R.; Halfer, T.; Treccani, L.; Maas, M.*; Rezwan, K. JACE 2013, 3, 736–742.

Universität Bremen

43

michael.maas@uni-bremen.de Bioceramics – L9 Advanced

≻Coacervation: CaCO₃ Microcarriers

44

michael.maas@uni-bremen.de Bioceramics – L9 ●●● A d v a n c e d

CS

➤Coacervation: CaCO₃ Microcarriers

45

➤Coacervation: CaCO₃ Microcarriers

Amount of BSA incorporated in CaCO₃ microcarriers

ug BSA per mg CaCO3				Efficiency (%)				
			25 min. complexation				25 min. complexation	
	0,5 g/L BS	SA	0,5 g/L BSA		0,5 g/L BSA		0,5 g/L BSA	
Sample	рН 7	pH 10	рН 7	pH 10	рН 7	pH 10	рН 7	pH 10
700.12.12	0.00	0.31	0.00	0.02	0.00	1.48	0.00	0.05
1400.12.12	1.50	2.18	0.00	1.55	9.78	18.87	0.00	5.56
1900.12.12	0.65	1.68	0.00	0.00	2.59	10.52	0.00	0.00

PAA concentration
$$CO_3^{2-}$$
 concentration
 Ca^{2+} concentration

A dvanced

Coacervation: Magnetite Microspheres

www.ceramics.uni-bremen.de

47

A dvanced michael.maas@uni-bremen.de/ ERAN **Bioceramics – L9**

AICS

Lecture Outline

- Drug Delivery Basics
- Drug Delivery Techniques
- Drug Delivery Using "Ceramic" Nanoparticles
 - Iron Oxide Nanoparticles •
 - Gold nanoparticles •
 - Mesoporous silica •
 - Calcium carbonate •
 - Colloidosomes •

Colloidosomes: Overview

Definition:

Microcapsules with nanoparticle shells

Advantages:

- Tunable porosity → selective permeability
- Range of possible building blocks
- Tunable size
- Monodisperse

Known methods:

- Based on polymer beads that are sintered at elevated temperatures
- Additional polymers for gelled cores or reinforced shells
- Huge colloidosomes (10 100 μm)

A dvanced

michael.maas@uni-bremen.de

Surfactant stabilized Thin-Films

Maas, M.; Ooi, C. C.; Fuller, G. G. Langmuir 2010, 26, 17867–17873.

- Surfactant stabilized nanoparticle thin films
- Idea derived from biomimetic CaCO₃ thin films

Thinfilms: Interfacial Shear Rheology

michael.maas@uni-bremen.de Bioceramics – L9 Advanced

Interfacial Shear Rheology of the decane/water interface

Time tests of films grown at the interface between

- a) SiO₂ (pH 10) in water + 1 mM stearic acid in decane,
- b) SiO₂ (pH 10) in water + 1 mM stearyl amine in decane,
- c) SiO₂ (pH 10) in water + 1 mM stearyl alcohol in decane.

Maas, M.; Ooi, C. C.; Fuller, G. G. Langmuir 2010, 26, 17867-17873

Colloidosomes

Colloidosome assembly works best with nanoparticles and surfactants with the same charge!

 SiO_2 + stearic acid Al_2O_3 + stearyl amine

www.ceramics.uni-bremen.de

53

michael.maas@uni-bremen.de Bioceramics – L9 Advanced

TEM Characterization of Colloid Particles

SiO₂ (LudoxTMA)

- uniform & mostly spherical
- no agglomeration
- d = 22 nm
- ζ-Potential = -24 mV

Al₂O₃ (AluC)

- varying shapes
- strong agglomeration
- d = 13 nm
- ζ -Potential = +30 mV

Al₂O₃ coated SiO₂ (LudoxCL)

- mostly spherical
- no agglomeration
- d = 15 nm
- ζ-Potential = +25 mV

A dvanced

at www.ceramics.uni-bremen.de

54

Colloidosomes: Dynamic Light Scattering

Metal Oxide	Average particle diameter (nm)	Average colloidosome diameter (nm)	Zeta potential (mV)
SiO ₂	25 ± 4	420 ± 160	-40 ± 2
Al ₂ O ₃	12 ± 3	230 ± 60	+43 ± 11
Al ₂ O ₃ coated SiO ₂	17 ± 3	200 ± 140	+75 ± 6

56

michael.maas@uni-bremen.de Bioceramics – L9 Advanced

SEM & TEM studies of internal Capsule structure

Bremen

www.ceramics.uni-bremen.de

57

Bioceramics – L9

Capsule loading with Proteins (Preparation)

Bremen

Bioceramics – L9

Multifunctional Colloidosomes

Multifunctional Colloidosome

- Properties:
- Submicron Capsule based on different types of nanoparticles with distinct properties
- Building block system (easily integrate other nanoparticles types)
- Submicron size
- (Protocell like structure)

Superparamagnetic and Fluorescent Colloidosomes

- a: Superparamangetic submicron colloidosomes
- b: Fluorescent submicron colloidosomes

michael.maas@uni-bremen.de Bioceramics – L9 Advanced

CS

Co-Assembled Multifunctional Colloidosome

Bifunctional submicron colloidosome

Multifunctional Colloidosome

Properties:

- Submicron Capsule based on different types of nanoparticles with distinct properties
- Building block system (easily integrate other nanoparticles types)

Advanced

Submicron size

62

Bioceramics – L9

michael.maas@uni-bremen.de

Summary

Coacervation-Mediated Mineralization

Advantages:

- Biocompatibility
- One-pot-process
- Tunable size (200 nm 2 µm)

Colloidosome Formation

Advantages:

- Range of possible building blocks
- Tunable porosity → selective permeability
- Submicron size

www.ceramics.uni-bremen.de

Outlook

Lego system for microcapsule design

- inorganic nanoparticle shell
- large molecule active agents: proteins
- small molecule active agents: growth factors, antibiotics
- superparamagnetic nanoparticles for mobility, triggered release and diagnostics

64

- fluorescent nanoparticles for diagnostics
- polymer/coacervate core for structural tuning, controlled porosity
- functionalized nanoparticles as receptors
- protein/polymer corona for tuned biological interaction

Jniversität _v Bremen

Outlook

A versatile platform for functional submicron capsules for theragnostics:

- Inorganic nanoparticle framework
- Functional building blocks
- Shell reinforcement via mineralization
- Self-assembly processes under mild conditions
- Various strategies: colloidosome route, coacervation route

Basic research:

- nanoparticle/protein interactions in interfacial films
- multicomponent thin films
 - → interfacial shear rheology
 - → LB-trough studies
- biomimetic mineralization of CaCO₃, CaP and Fe₃O₄

Related projects:

- micromolding
- porous ceramics
- nanofibers

Course Outline "Bioceramics"

- 1. Introduction: Applications, Goals and Challenges
- 2. A short Introduction to Proteins and Cells
- 3. Ceramics at the Biology Interface: Fundamental Interactions
- 4. Characterization of Biomolecule Adsorption
- 5. Bones and Teeth: Composites of Ceramics and Proteins
- 6. Ceramics for Orthopedic and Dental Implants: Alumina and Zirconia
- 7. Scaffolds for Bone Tissue Engineering: Calciumphosphates
- 8. Scaffolds for Bone Tissue Engineering: Bioglass® and Glass-Ceramics
- 9. Drug Delivery Using Ceramic Nanoparticles
- 10. Biomineralization
- 11. Biomimetic Materials
- 12. Student Talks on Selected Topics
- 13. Summary

A dvanced

Further reading

Drug delivery, Handbook of Experimental Pharmacology 197, Monika Schaefer, Springer Verlag, 2010 (this one is highly suggested)

Design of Controlled Release Drug Delivery Systems, Xiaoling Li, McGraw-Hill, 2006

Characterization of Nanoparticles Intented for Drug Delivery, Springer Protocols, Methods in Molecular Biology, 2011

Nanoparticle Technology for Drug Delivery, Ram Gupta, Drugs and the Pharmaceutical Sciences Vol 159, 2006

www.ceramics.uni-bremen.de

67

44 marketed Nano-delivery products

Product	Generic	Formulation	Indication	Manufacturer
Abraxane	Paclitaxel	Polymeric nanoparticles	Cancer chemotherapy	Celgene
Abelcet	Amphotericin B	Liposomal formulation	Fungal infections	Elan/Alkermes, Enzon, Cephalon
Adagen	Adenosine deaminase	PEGylation	Enzyme replacement therapy	Enzon, Sigma-Tau
AmBisome	Amphotericin B	Liposomal Formulation	Oral and perioral infections	Astellas/Gilead Sciences
Amphotec	Amphotericin B	Liposomal Formulation	Oral and perioral infections	Three Rivers Pharmaceuticals/ALZA
Avinza	Morphine sulphate	nanocrystal formulation	Moderate to severe pain	Elan/Alkermes, Pfizer
Copaxone	Glatiramer acetate	Copolymer of Iglutamic acid, Ialanine, I-tyrosine and I-lysine)	Multiple sclerosis	Teva Pharmaceuticals
Curosurf	Poractant alfa	Liposome	Neonatal respiratory distress	Chiesi Farmaceutici SpA
DaunoXome	Daunorubicin	PEGylated liposome Formulation	Cancer chemotherapy	Gilead Sciences
DepoCyt	Cytarabine	Sustained-release Liposomes	Cancer chemotherapy	SkyePharma/Enzon
Depodur	Morphine sulphate	Liposome	Pacira Pharmaceuticals	Pacira Pharmaceuticals
Diprivan	Propofol	Liposomes	Induction of anesthesia	AstraZeneca
Doxil/CaelyX	Doxorubicin	PEGylated liposome Formulation	Cancer chemotherapy	ALZA/ OrthoBiotech/ Schering Plough
Elestrin	Elestrin Estradiol gel	Phosphate nanoparticles	Menopausal symptoms	BioSante
Elyzol	Metronidazole	Dental gel	Parodontitis Camurus	Camurus
Emend	Aprepitant	Nanocrystal Formulation	Anti-emetic	Merck & Co+ Elan/Alkermes
Epaxal	Hepatitis A vaccine	Virosome technology	Prevention of Hepatitis A infection	Berna Biotech
Episil	Bioadhesive barrier	Fluidcrystal	Oral pain	Sinclair/Teva
Estrasorb	Estradiol gel	Micellar Nanoparticles	Menopausal symptoms	Novavax/Espirit Pharma
Focalin XR	Dexmethylphen idate hcl	Nanocrystals	ADHD	Novartis Élan/Alkermes
Fosrenol	Lanthanum carbonate	Inorganic Nanoparticles	End-stage renal disease	Shire
Genexal PM	Paclitaxel	Polymeric micelles	Cancers	Samyang

Product	Generic	Formulation	Indication	Manufacturer
Indaflex	Indomethacin	Solid/lipid nanoparticles	Osteoarthritis	AlphaRx
Inflexal V	Subunit influenza vaccine	Virosome	Influenza prophylaxis	Crucell
Invega Sustenna	Paliperidone	Nanocrystal	Antipsychotic	Janssen
Macugen	Pegaptanib	Pegylated anti-vegf aptamer	Age-related macular degeneration	OSI Pharmaceuticals/ Pfizer
Myocet	Doxorubicin citrate complex	Liposome encapsulated	Cancer chemotherapy	Cephalon/Zeneus Pharma/ Sopherion Therapeutics
Megace ES	Megestrol acetate	Nanocrystal formulation	Cancer therapy	Elan/Alkermes+Par+Bristol- Myers Squibb
MuGard	Hydrogel mouth rinse	Nanogel	Head and neck cancers	Access Pharma
Naprelan	Naproxen	Nanocrystal formulation	Arthritis, gout	Elan/Alkermes
Nanoxel	Paclitaxel	Polymeric nanoparticles	Cancer chemotherapy	Dabur Pharma
Neulasta	Filgrastim	Pegylation	Neutropenia	Amgen
Oncospar	Oncospar PEG- Lasparaginase	Pegylation	Cancers	Enzon/Schering- Plough
Pegasys	Peginterferon alfa 2a	Pegylation	Hepatitis B, hepatitis C	Roche/Nektar
PegIntron	Peginterferon alfa 2b	Pegylation	Chronic hepatitis C	Schering-Plough
Rapamune	Sirolimus	Nanocrystal formulation	Immunosuppression	Wyeth Élan/Alkermes
Renagel	Sevelamer hcl	Poly (allylamine) resin	Hyperphosphatemia in hemodialysis	Genzyme
Salinum	Potassium, magnesium, chlorine	Oral liquid	Xerostomia	
Somavert	Pegvisomant	Polymer protein conjugate	Acromegaly	Pfizer
Ritalin LA	Methylphenidate Hcl	Pulsatile release Nanocrystal formulation	ADHD	Elan/Novartis
Survanta	Beractant	Liposome encapsulated	Neonatal respiratory distress	Abbott
Tricor	Fenofibrate	Nanocrystal formulation	Lipid reduction	Abbott Élan/Alkermes
Triglide	Fenofibrate	Nanocrystal formulation	Lipid reduction	SkyePharma/ First Horizon Pharmaceuticals/Sciele Pharma
Verelan/ Verelan PM	Verapamil	Elan's SODAS Multiparticulate technology	Hypertension	Elan/Alkermes Schwarz

Source BCC Research

ETPN General Assembly London

Timeline for Drug Evaluation

69

